
www.manaraa.com

Multivariate resting-state functional connectivity
predicts response to cognitive behavioral therapy
in obsessive–compulsive disorder
Nicco Reggentea,1, Teena D. Moodyb, Francesca Morfinib, Courtney Sheenb, Jesse Rissmana,b, Joseph O’Neillc,
and Jamie D. Feusnerb

aDepartment of Psychology, University of California, Los Angeles, CA 90095; bDepartment of Psychiatry and Biobehavioral Sciences, David Geffen School of
Medicine at University of California, Los Angeles, CA 90095; and cDivision of Child and Adolescent Psychiatry, David Geffen School of Medicine at University
of California, Los Angeles, CA 90095

Edited by Cameron Carter, University of California, Davis, CA, and accepted by Editorial Board Member Marlene Behrmann January 10, 2018 (received for
review September 21, 2017)

Cognitive behavioral therapy (CBT) is an effective treatment for
many with obsessive–compulsive disorder (OCD). However, re-
sponse varies considerably among individuals. Attaining a means
to predict an individual’s potential response would permit clini-
cians to more prudently allocate resources for this often stressful
and time-consuming treatment. We collected resting-state func-
tional magnetic resonance imaging from adults with OCD before
and after 4 weeks of intensive daily CBT. We leveraged machine
learning with cross-validation to assess the power of functional
connectivity (FC) patterns to predict individual posttreatment OCD
symptom severity. Pretreatment FC patterns within the default
mode network and visual network significantly predicted post-
treatment OCD severity, explaining up to 67% of the variance.
These networks were stronger predictors than pretreatment clin-
ical scores. Results have clinical implications for developing per-
sonalized medicine approaches to identifying individual OCD
patients who will maximally benefit from intensive CBT.
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Obsessive–compulsive disorder (OCD) is characterized by
recurrent intrusive thoughts (obsessions) and/or repetitive

behaviors (compulsions) (1). OCD has a lifetime prevalence of
∼1–2% worldwide (2) and is associated with poor quality of life,
functional impairment, and increased use of health care services (3).
Cognitive behavioral therapy (CBT), including intensive CBT,

shows moderate-to-high effectiveness for OCD (4, 5). However,
response varies significantly among individuals (6). In addition,
specialized CBT is expensive, stressful, and time-consuming and
often has limited availability (7). This underscores the impor-
tance of developing reliable predictors of response to treatment
to aid clinical decision-making.
Many studies have identified psychometric and demographic

features that correlate with treatment response (8) but, un-
fortunately, do not consistently predict outcome (9). Neuro-
imaging biomarkers have recently shown promise at predicting
response to treatment (10). However, only one small study using
symptom provocation functional magnetic resonance imaging
(fMRI) (11) and one study of brain connectivity using resting-
state fMRI (12) have drawn correlations between baseline neural
measures and subsequent response to CBT. Feusner et al. (13)
previously found that pretreatment brain network small-worldness,
a graph theory measure derived from resting-state fMRI, was asso-
ciated with the trajectory of OCD symptoms up to 12 mo after in-
tensive CBT and that small-worldness increased pre- to post-CBT.
Another OCD study (14)—this time of serotonin reuptake

inhibitor (SRI) treatment—found significant pretreatment to
posttreatment changes in network connectivity in the fronto-
parietal, cinguloopercular, somatosensory–motor, and visual
networks. Although this study also did not focus on predicting
response to treatment, the observation that connectivity changed

with treatment in these networks provides a rationale for exam-
ining their predictive ability in relationship to clinical outcomes.
No studies to date have applied multivariate approaches to

investigate changes in brain connectivity pretreatment to post-
treatment, to predict treatment outcome, or to predict symptom
trajectory after treatment. Multivariate analyses of brain con-
nectivity offer advantages of simultaneously capturing patterns
involving multiple connections, likely better reflecting the com-
plexity of brain networks than standard univariate approaches.
Multivariate pattern recognition analyses have proven to be
more sensitive than conventional univariate analyses in assessing
the link between neuroimaging and behavioral variables to pre-
dict the presence or absence of other brain disorders (15, 16).
Here we utilized a multivariate approach to explore pre-

treatment network connectivity patterns that might presage
posttreatment symptom severity. Multivariate analysis was ap-
plied to whole-brain resting-state fMRI acquired before and
after 4 wk of intensive CBT and before and after a waitlist
control condition. Our search were data-driven but restricted to
networks where connectivity patterns had previously been found
to change with treatment (14) because networks that reorganize
during treatment might also be predictive of treatment
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outcome. These included the above-mentioned frontoparietal,
cinguloopercular, somatosensory–motor, and visual networks.
To these we added the default mode network (DMN) (17–20)
and the dorsal and ventral attention networks (21), where pre-
vious studies found abnormal connectivity in OCD. We addi-
tionally included the subcortical network given the well-known
cortico-striato-thalamo-cortical hyperactivity in OCD, including
(but not limited to) caudate and putamen, which might be af-
fected by CBT (22, 23). All network-defined regions of interest
(ROIs) were derived from Power et al. (24), who parcellated the
brain into functional networks based on resting-state connectivity
data and metaanalysis of task fMRI studies (24).
Finally, the amygdala, compared with many other brain re-

gions, has shown particular value in predicting response to CBT
for OCD (11, 12) and has frequently exhibited abnormalities in
OCD involving blood oxygenation level-dependent (BOLD) ac-
tivation (25–29) and/or functional connectivity (21, 30–32).
Therefore, we performed additional analyses in which we added
bilateral amygdala ROIs from the Harvard Oxford Atlas to the
list of ROIs within each network.

Methods and Materials
Recruitment and Assessment. We recruited participants from University of
California, Los Angeles (UCLA), clinics and through flyers and Internet adver-
tisements. All experimental procedures were approved by the UCLA In-
stitutional Review Board, and all participants provided written informed
consent before participation. OCD diagnosis was established through inter-
views by one author (J.D.F.), who has clinical experience with this population.
Primary OCD and comorbid diagnoses were determined using the Anxiety
Disorders Interview Schedule for DSM–IV–Mini (ADIS-IV-Mini) (33). OCD par-
ticipants were eligible if they scored at least a 16 on the Yale–Brown Obsessive
Compulsive Scale (YBOCS) (34). Participants could be unmedicated or taking
SRIs if there were no changes in medication within 12 wk of enrollment. For
detailed inclusion/exclusion criteria, please see Supporting Information.

Psychometric Evaluations. Primary outcome was the YBOCS. Secondary mea-
sures pretreatment to posttreatment included the Hamilton Anxiety Scale
(HAMA) (35) and the Montgomery–Åsberg Depression Rating Scale (MADRS)
(36). General functionality and social/occupational performance was rated
with the Global Assessment Scale (GAS) (37). An independent evaluator, not
involved in treatment or assessments, administered psychometric instruments.

Treatment. All 42 OCD participants underwent manualized (38) exposure and
response prevention (ERP)-based intensive CBT. Individual treatment plans
consisted of 90-min sessions, 5 d per week, for 4 wk, as previously described
(13). Approximately half (n = 21) were randomized to a 4-wk minimal-
contact waitlist-first condition followed by treatment.

FMRI Acquisition and Processing. Whole-brain BOLD fMRI was collected using
a 7-min echo-planar imaging sequence [3T Siemens Trio; 12-channel head coil;
repetition time/echo time (TR/TE) = 2,000/25 ms; flip 78°; voxels 3 mm3; 1-mm
gap; 35 axial slices; field of view 195 mm anterior to posterior, 195 mm right-
left, 139 mm foot to head] within 1 wk before treatment and within 1 wk
after treatment. Those randomized to the waitlist-first condition were also
scanned within 1 wk before they started the 4-wk waitlist, as well as before
and after treatment. Participants were instructed to rest with eyes closed
and not to sleep. T1-weighted structural MRI [axial magnetization-prepared
rapid gradient-Echo (MPRAGE), TR/TE = 1,900/3.26 ms, voxels 1 mm3] was
coacquired for registration.

Functional data were preprocessed without spatial smoothing using the
FMRI Software Library 5.0.4 (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki). Data were
motion-corrected using FMRIB’s Linear Image Registration Tool for Motion
Correction (MCFLIRT) and band-pass filtered (0.009–0.08 Hz). Seven and
12 degrees-of-freedom transforms were used to register functional images
to MPRAGE and to Montreal Neurological Institute space, respectively, and
images were resampled to 2 mm3. Nuisance covariates included global signal
and cerebrospinal fluid signal (along with their first derivatives) as well as
6 head motion parameters, for a total of 10 parameters; these were removed
by linear regression. Motion was assessed using DVARS (root-mean-squared
change in volume-to-volume BOLD signal) (39) and framewise displacement
(FD) (39, 40) to compare pre- vs. post-CBT and to exclude those with
DVARS > 2 SD above the mean and those with FD > 0.3 in either session. Two

participants’ data were excluded due to excessive head motion (FD > 0.3 for
one and DVARS > 2 SD in another), resulting in a total of 42 participants for our
functional analyses. There were no significant differences in motion as mea-
sured by DVARS pre-CBT (29.1 ± 4.4) vs. post- CBT (28.5 ± 4.7) (P = 0.44, paired
t test). Nor were there significant differences in motion as measured by FD pre-
CBT (0.13 ± 0.06) vs. post-CBT (0.13 ± 0.05) (P = 0.59, paired t test). Before
functional connectivity-based analyses, each voxel’s time course was z-scored.

Functional Connectivity Matrix Construction. Mean BOLD time courses were
extracted from the average activity across voxels in 196 spherical ROIs with
5-mm radius (24).These belonged to the aforementioned cinguloopercular
(n = 14 ROIs), frontoparietal (n = 25), ventral attention (n = 9), dorsal at-
tention (n = 11), visual (n = 31), somatosensory–motor (n = 35), default
mode (n = 58), and subcortical (n = 13) networks of interest (14, 17–19, 22,
23, 41–45). Matrices of correlation coefficients were created for each par-
ticipant by computing pairwise correlations of each ROI’s mean BOLD time
course with that of all other ROIs (Fig. 1A). For additional analyses, bilateral
amygdala ROIs from the Harvard Oxford Cortical and Subcortical Structural
Atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases) were thresholded at 50%
population probability and included in the list of ROIs within each network.

Feature Selection. For each participant, features included the functional
connectivity (FC) values between the ROIs within each network, pretreatment
YBOCS score, and a binary medication variable indicating whether or not
psychotropics were being taken at time of scan. We included YBOCS and
medication as features because they represent potentially informative, and
readily obtained, a priori clinical information that might add predictive value.
Thus, each participant’s feature set consisted of nðn− 1Þ=2+ 2 features,
n being the number of ROIs in the network of interest (Fig. 1B).

Machine Learning Multivariate Regression Analyses. To control for variations in
age, sex, illness duration, and IQ [Wechsler Abbreviated Scales of Intelligence
(WASI) scores] across participants, each feature was iteratively submitted to
multiple linear regression with the aforementioned variables as predictors.
The residuals were used as the new features.

We built a least absolute shrinkage and selection operator [LASSO (46)]
regression model whose regularization parameter was optimized using the
least angle regression (LARS) algorithm (47) on an N − 1 cross-validation that
maximized the Pearson correlation between actual and predicted post-
treatment YBOCS scores. To minimize overfitting, we used these optimized
model parameters in an N − 10 cross-validation, where a random subset of
10 participants (∼25%) were left out and the model was trained on the
remaining participants. For our 42 participants, this yielded four folds, plus
an additional fold of the cross-validation that left out two participants.
Using the model’s intercept term and outcome beta values as coefficients for
each feature value, we used the weighted sum of each left-out participant’s

features to obtain predicted behavioral measures of interest ðŶÞ. After the
five folds, whereby each participant was left out exactly once, we correlated

the array of predicted values ðŶÞ with the actual values (Y), yielding Pear-
son’s R and R2

—a measure of our model’s feature-dependent ability to
capture the behavioral variance across participants. We repeated this five-
fold cross-validation 10 times and averaged the R values to converge on a
true estimate of our test statistic independent of which participants were

randomly included in each fold. We also report the RMSE [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=N

PN
i= 1

ðŶ i −Yi Þ2
r

] values

averaged across the 10 iterations.

Machine Learning Classification Analyses. For a series of follow-up analyses, we
used the same feature sets to train a linear nu-support vector classifier (nu-
SVC, c = 1; ref. 48). For each analysis of interest, we used a leave-
10-participants-out cross-validation approach that balanced training class
examples by randomly removing examples from the overrepresented class.
We ran this cross-validation 10 times and report the average accuracy values.

Significance Testing. We first report the significance of the correlation co-
efficients by comparing the R-value to a Student’s t distribution ðptÞ. To
account for multiple comparisons across our different networks of interest,
we used a Bonferroni-corrected significance level of p≤ .006 (0.05/8 net-
works). To confirm that our classification scheme was not subject to bias and
was immune to parametric assumption violations, we also compared
significant R values (pt ≤ .006) to an empirical null distribution created with a
bootstrap procedure ðpbsÞ. See SI Methods.

For all SVM analyses, significance was determined by the binomial inverse
of the cumulative distribution function to identify the smallest number of
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correct classifications of the total number of classifications (number of par-
ticipants raised to the power of the number of groups in the classification),
where the distribution was centered around the chance value by randomly
shuffling the labels before classification (49).

Top Connections. For each fold of the cross-validation, the betas used to
predict the left-out participants were stored. The average beta for each FC
feature was calculated and sorted as a function of magnitude. For visuali-
zation purposes, the top 5% of connections in each network that reached
significance can be seen in Figs. S1 and S2.

Results
Participants. Fifty-one right-handed adults ages 18–60 with the
Diagnostic and Statistical Manual of Mental Disorders, 4th edition
(DSM–IV) (50) OCD were enrolled. Four waitlist-first partici-
pants withdrew before completing waitlist, and one was with-
drawn due to medication protocol violation. The study physician
withdrew two treatment-first participants, and two completed the
study but had inadequate fMRI data due to head motion. Ulti-
mately, data from 42 OCD participants were analyzed. Thirteen
were medicated: six with fluoxetine, one with fluvoxamine, two
with escitalopram, and three with sertraline. Twenty-nine had one
or more comorbid psychiatric diagnoses (Table 1 and Table S1).

Symptom Changes. YBOCS improved pre- to post-CBT in 41 of
42 OCD participants [pre-CBT mean: 24.6 ± 4.7, post-CBT:
15.0 ± 5.3; improvement 9.6 ± 5.9 (39.0%), 95% CI, 8.8–11.3:
t41 = 10.5, P < 0.001] (Table 1). Prewaitlist to postwaitlist, there
was little change in YBOCS [prewaitlist: 25.8 ± 4.9, postwaitlist
25.0 ± 5.4; 0.90 ± 3.1 (3.2%) improvement: t41 = 1.21, P = 0.24].
Pretreatment and posttreatment YBOCS scores were only
moderately associated (R2 = 0.095, P = 0.047).

Functional Connectivity. Two of the pretreatment FC feature sets
strongly and reliably predicted a participant’s posttreatment
YBOCS (Fig. 2). When the DMN’s pretreatment FC values were
used in the feature set, the classification was most powerful,
capturing 67% of the variance in posttreatment YBOCS
(R2 = 0.67;  RMSE= 3.32; pt < 0.001;   pbs < 0.001). Pretreatment

FC within the visual network also accounted for significant var-
iance ðR2 = 0.51;  RMSE= 3.69;   pt < 0.001;   pbs < 0.001). No other
networks reached statistical significance (Table 2).
For networks whose pretreatment FC was informative when

predicting posttreatment YBOCs, we examined the effect of
including bilateral amygdala ROIs with each network. Neither
the DMN nor the visual network saw an increase in predictive
ability from the inclusion of the amygdala. To determine the
effect of the additional features (pretreatment YBOCS and the
binary medication variable), we reran the LASSO cross-validation
without these features (relying only on FC patterns within the
networks of interest) and observed moderately higher predictive

Fig. 1. (A) The average resting-state activity within ROIs from eight functional brain networks defined by Power et al. (24) was used to create a mean BOLD
time course. A pairwise Pearson correlation of these time courses resulted in a functional connectivity (FC) matrix specific to each network. (B) The lower
diagonal of each participant’s network-specific FC matrix was concatenated with the participant’s pretreatment YBOCS score and a binary variable indicating
whether or not the participant was on medication to create a feature set for that participant. (C) A LASSO regression model was trained on n − 10 partic-
ipants’ feature sets and their associated posttreatment YBOCS values and used to predict each of the left-out participant’s posttreatment YBOCS scores. Left-
out participants are denoted as shaded feature sets (only three shown here due to space constraints). This process was repeated until all participants had been
left out in a fold of the cross-validation and had been assigned a predicted posttreatment YBOCS ðŶÞ. We correlated the array of predicted values ðŶÞwith the
actual values (Y), yielding Pearson’s R and R2, a measure of our model’s feature-dependent ability to capture the behavioral variance across participants. Note
that due to our participant sample size (n = 42), one fold of the cross-validation left out two participants, exemplified in fold 5.

Table 1. Demographic and psychometric characteristics of the
sample (N = 42)

Characteristic Value SD P value

Female/male 22/20
Age 32.4 9.9
Education, y 15.6 2.4
WASI IQ 108.4 9.1
Number on serotonin-reuptake inhibitor 13
Number with psychiatric comorbidities 29
Number without psychiatric comorbidities 13
YBOCS total pre-CBT 24.6 4.7
YBOCS total post-CBT 15.0 5.3 <0.001*
YBOCS obsessions (1–5) pre-CBT 12.0 2.7
YBOCS obsessions (1–5) post-CBT 7.9 3.1 <0.001*
YBOCS compulsions (6–10) pre-CBT 12.6 2.3
YBOCS compulsions (6–10) post-CBT 7.1 2.7 <0.001*
HAMA pre-CBT 12.5 5.3
HAMA post-CBT 8.5 5.1 <0.001*
MADRS pre-CBT 15.6 9.3
MADRS post-CBT 11.0 8.9 <0.001*
GAS pre-CBT 57.7 8.6
GAS post-CBT 69.5 13.4 <0.001*

*Paired t test, comparing pre- versus post-CBT.
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power in both the DMN (R2 = 0.67 with vs. R2 = 0.69 without)
and visual network (R2 = 0.51 with vs. R2 = 0.53 without). No
feature sets accounted for significant variance in participants’
postwaitlist YBOCS scores, indicating that prediction of OCD
outcome was specifically related to CBT as opposed to the mere
passage of time. To confirm that results were specific to pre-
dicting OCD symptom outcomes, we also conducted cross-validations
for the HAMA and MADRS scores both before and after
treatment. No networks accounted for significant variance in
these end points. To confirm that our results were specific to
OCD outcome and not comorbid conditions such as depression
and anxiety, we used the pretreatment data in two SVM cross-
validations to predict whether a participant had (i) a depressive
disorder (n = 10; major depressive disorder, dysthymic disorder,
and depressive disorder not otherwise specified) and/or (ii) an
anxiety disorder (n = 24; generalized anxiety disorder, social
anxiety disorder, panic disorder, posttraumatic stress disorder,
specific phobia, and body dysmorphic disorder). See SI Methods
for more information. No feature sets had a classification ac-
curacy (averaged over 10 iterations) that was statistically different
from chance (50%) in either cross-validation.
We also performed an SVM cross-validation to determine if

pretreatment FC feature sets from the DMN and visual network
could classify significant clinical change (responders) according
to previously published expert consensus criteria (YBOCS de-
crease of ≥35% and CGI-I of 1 or 2) (51). Both networks were
able to classify responders (n = 23) from nonresponders with
high accuracy (visual network accuracy = 70.0%, P < 0.001;
DMN accuracy = 67.9% accuracy, P < 0.001; chance = 50%).
To establish that results were specific to predicting treatment

response rather than merely reflecting OCD symptom severity,
we examined post hoc the predictive power of pretreatment
connectivity on pretreatment YBOCS scores. Neither the visual
network nor the DMN (the networks whose pretreatment FC
significantly accounted for variance in posttreatment YBOCS)
accounted for significant variance in pretreatment YBOCS when
using pretreatment FC feature sets. We also examined rela-
tionships between posttreatment feature sets and posttreatment
YBOCS. Only the posttreatment visual network feature set that
also included the amygdala ROIs could predict posttreatment
YBOCS (R2 = 0.24, RMSE = 4.6; P < 0.001) (Figs. S2 and S3
and see Supporting Information for additional post hoc analyses).

Discussion
This OCD study uses multivariate pattern recognition to identify
neurobiological predictors of treatment response. Pretreatment
multivariate connectivity in the DMN and the visual network
significantly predicted individual patients’ OCD symptoms after
4 wk of intensive CBT. Conversely, pretreatment OCD symptom
severity was only moderately associated with posttreatment se-
verity and, along with medication status, was not ranked in the

top quartile of feature predictive strength. Furthermore, these
clinical variables were not able to reliably predict posttreatment
YBOCS when used as features on their own in the cross-validation.
Thus, brain connectivity far exceeded more readily obtained, a
priori clinical information in its prognostic value for treatment
response. These findings have implications for identifying who
will benefit most from CBT, as well as for understanding the
pathophysiology of OCD as it relates to CBT effects.
This predictive power of multivariate connectivity was vali-

dated in several ways (beyond our cross-validation procedure).
First, it was specific to OCD symptoms and not to anxiety and
depression. Second, it did not apply to cross-sectional pre-
treatment OCD symptoms. Third, changes predicted were spe-
cific to CBT and not merely a function of the passage of time.
These results suggest that pretreatment connectivity reflects the
capacity of an individual with OCD to return to normalcy—as
quantified by YBOCS—after intensive CBT, independent of his/
her starting symptom severity. Thereby, these connectivity pat-
terns may reflect network plasticity and amenability to treat-
ment-induced modulation. The SVM classification results that
showed that both DMN and visual network pretreatment func-
tional connectivity values could significantly predict responders
vs. nonresponders adds further evidence to this narrative.
Pretreatment connectivity within the DMN was most pre-

dictive of end point OCD symptoms. This could reflect the po-
tential of certain individuals’ DMN to reorganize to provide a
neural instantiation for modified behaviors taught during CBT.
The DMN has been associated with self-referential processing
(52), and obsessions often contain “evaluative dimensions about
the self” (53). These may be associated with contamination-re-
lated compulsions (54) and possibly with an overinflated sense of
personal responsibility (e.g., moral or religious scrupulosity) or
obsessive concerns about harm. It is thus plausible that DMN
connectivity patterns are related to OCD symptoms and/or re-
sponsiveness to CBT. Indeed, recent neuroimaging studies have
found abnormal connectivity in the DMN and its constituent
regions to be associated with OCD symptoms (17, 55). Given the
proposed functions of the DMN, these studies suggest a possible
contributor to self-oriented repetitive obsessions in some OCD
patients: an impaired inability of the medial frontal cortex to
evaluate performance (56, 57). For example, the hands are
compulsively washed again because the first time was not “good
enough,” or prayer is scrupulously repeated since it was not
sufficiently “pure” or “devout” the first time. Our results could
reflect the potential for the DMN to adjust toward a more
adaptive state, allowing one’s thoughts to escape the loop of self-
referential processing and to switch to externally oriented, goal-
directed cognition (58).
Pretreatment connectivity across the visual network also sig-

nificantly predicted end point OCD symptoms. In anxiety

Table 2. Associations between predicted and actual post-CBT
OCD symptom severity for eight functional brain connectivity
networks subjected to multivariate analysis

Network R2

Default mode 0.672*
Visual 0.505*
Dorsal attention 0.022
Somatosensory motor 0.123
Cinguloopercular 0.170
Frontoparietal 0.215
Subcortical 0.148
Ventral attention 0.057

*p ≤ 0.006; Bonferroni-corrected significance level.

Fig. 2. Scatterplots depicting the relationship between the array of pre-
dicted posttreatment YBOCS values with the actual posttreatment YBOCS
values when the LASSO cross-validation model was relying on feature sets
that included pretreatment functional connectivity from the default mode
network (Left) and the visual network (Right).
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disorders and in other obsessive–compulsive related disorders,
similar brain activity and connectivity relationships have been
observed in visual regions. A study in social anxiety disorder
found right visual cortex activity in response to angry faces to be
associated with improved symptoms post-CBT (59). Also in so-
cial anxiety disorder, FC between amygdala and inferior tem-
poral/occipital cortex and fractional anisotropy in inferior
longitudinal fasciculus (connecting the amygdala with visual re-
gions) both predicted symptom response to CBT (60). Activity in
the visual stream, mediated by amygdala activity, was associated
with anxiety in individuals with body dysmorphic disorder (61).
The current investigation adds to evidence for a role of visual

ROIs in CBT response across disorders. A rationale exists for an
association of visual network connectivity with CBT response in
OCD. OCD trigger stimuli are frequently visual or evoke visual
imagery. Early theories about potential mechanisms of exposure
and response prevention exercises in CBT described corrective
learning occurring as a result of emotional desensitization (fear
extinction) when one is exposed to a feared stimulus and com-
pulsive behaviors are not performed (62). More recent theories
posit that successful exposure and response prevention may
not require extinction but rather the acquisition of secondary
inhibitory learning (63). With either model, reorganization of
visual networks may accompany these evolving responses to
OCD-relevant signals.
Emotionally charged stimuli can up-regulate visual processing

(64–68). In most cases, e.g., ref. 69, such up-regulation is adap-
tive. However, misattribution of emotional valence to non-
threatening or non–task-related stimuli could cause pathological
up-regulation of visual processing dedicated to those stimuli. In
OCD, hypervigilance-related up-regulation could enhance visual
attention, contributing to obsessional preoccupation with envi-
ronmental stimuli that are not inherently salient (e.g., a dirty
doorknob) or with irrelevant details (70). Because visual
awareness has been shown to modulate detection of fearful
stimuli (71), visual activation could facilitate an arousal feedback
loop within and across the visual network and amygdalae. In the
current study, OCD participants who achieved lower post-CBT
YBOCS may be those who started treatment with visual systems
that were more amenable to a “rewiring” that could help impede
such circularities. As such, we suspected that including an
amygdala ROI to our visual network might result in a FC feature
set that outperformed the visual network alone. However, we
witnessed no increase in model performance—accuracy stayed
the same. This suggests that FC within the visual network may
already contain information relayed by the amygdala or that
the amygdala does not meaningfully modulate visual activity, as
related to OCD treatment response, during rest. Future studies

using task-based fMRI are needed to test such hypotheses.
However, our finding that posttreatment FC in the visual net-
work is only informative in predicting posttreatment YBOCs
scores when bilateral amygdala ROIs are included raises the
possibility that one of the effects of CBT might be to significantly
adjust the interplay between the visual network and amygdala.
One limitation of the current study is sample size. Our cross-

validation approach of leaving out ∼25% of participants for
model testing helped minimize overfitting, yet much larger
datasets that can be randomly split and still contain larger
numbers for both training and testing the model may provide
more optimal internal validation. Beyond that, there is need for
validation in a fully independent sample to ensure robustness
and generalizability across samples that differ slightly, because
prediction analyses in smaller studies may fail to generalize when
applied to independent samples. Another limitation is that some
participants (n = 13) were medicated. The small size of this
subsample precluded separate analyses of medicated and un-
medicated participants, so to account for possible medication
effects we used a binary medication variable in the model. A
further limitation is that although multivariate regression analyses
capitalize on complex data patterns to make predictions, the
specific nature of the patterns that lead to predictions can be
challenging to interpret. Future work is required to obtain a
deeper mechanistic understanding of which sets of regions and
directions of interactions within the DMN and visual network are
driving the classifier’s predictions and why.
This study marks a success in predicting response to CBT

for OCD on the individual participant level. Using machine
learning and cross-validation, we demonstrated the ecological
validity of FC in assessing potential treatment efficacy. Such
measures yield a quantifiable benchmark of confidence when
determining treatment plans. Specifically, for a new OCD
patient undergoing a single 7-min resting-state scan, network
connectivity patterns could predict post-CBT YBOCS (or re-
sponder vs. nonresponder status) with relatively high confidence.
This could assist in developing treatment plans that optimize
time, cost, and available resources.
Finally, this study makes significant contributions to mapping

the neural correlates of responsiveness to OCD treatment. Such
insights could, for example, guide future studies of neuro-
modulatory treatment alongside behavioral therapy to expedite
patient recovery.
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