

ī to totto tot

Cognitive behavioral therapy (CBT) is an effective treatment for many with obsessive-compulsive disorder (OCD). However, re-to predict an individual's potential response would permit clinicians to more prudently allocate resources for this often stressful and time-consuming treatment. We collected resting-state func-and after 4 weeks of intensive daily CBT. We leveraged machine learning with cross-validation to assess the power of functional connectivity (FC) patterns to predict individual posttreatment OCD mode network and visual network significantly predicted posttreatment OCD severity, explaining up to 67% of the variance. ical scores. Results have clinical implications for developing per-patients who will maximally benefit from intensive CBT.

OCD | CBT | resting state | functional connectivity | machine learning

ѓ<list-item><list-item>

郡<table-cell><text>

ى}_{ij} Differee Diffe

Significance

The ability to predict an individual's potential response to treatment would permit clinicians to more prudently allocate resources that support cognitive behavioral therapy for obsessive-compulsive disorder (OCD), an often stressful and time-consuming treatment. The current study lays important groundwork for an exciting advance toward personalized medicine in psychiatry that up to this point has eluded the field. This study marks a success in using multivariate pattern recognition to identify neurobiological predictors of treatment response. In addition, it advances knowledge of the neurophysiology of OCD and of mechanistic processes involved in the therapeutic response, which could be used to refine existing treatments or to develop novel treatments based on identified potential brain targets.

The authors declare no conflict of interest.

Published under the PNAS license.

¹To whom correspondence should be addressed. Email: nreggente@psych.ucla.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. 1073/pnas.1716686115/-/DCSupplemental.

Published online February 12, 2018.

Author contributions: N.R., T.D.M., C.S., J.O., and J.D.F. designed research; N.R., T.D.M., F.M., C.S., and J.D.F. performed research; N.R., T.D.M., J.R., and J.D.F. contributed new reagents/analytic tools; N.R., T.D.M., and F.M. analyzed data; and N.R., T.D.M., F.M., J.R., J.O., and J.D.F. wrote the paper.

Finally, the amygdala, compared with many other brain regions, has shown particular value in predicting response to CBT for OCD (11, 12) and has frequently exhibited abnormalities in OCD involving blood oxygenation level-dependent (BOLD) activation (25–29) and/or functional connectivity (21, 30–32). Therefore, we performed additional analyses in which we added bilateral amygdala ROIs from the Harvard Oxford Atlas to the list of ROIs within each network.

Methods and Materials

ئ<list-item><list-item><list-item>

ॅ<list-item><list-item>

ѓ<list-item>**Feature Feature Feature**

πational definitional definitiona

We built a least absolute shrinkage and selection operator [LASSO (46)] regression model whose regularization parameter was optimized using the īleast augus aug īmodel parameters p parameters p ğan additional additio ॅ Official Off features to obtain predicted behavioral measures of interest (\hat{Y}). After the five folds, whereby each participant was left out exactly once, we correlated the array of predicted values (\hat{Y}) with the actual values (Y), yielding Pear-capture the behavioral variance across participants. We repeated this fivefold cross-validation 10 times and averaged the R values to converge on a true estimate of our test statistic independent of which participants were randomly included in each fold. We also report the RMSE $\left[\sqrt{1/N\sum_{i=1}^{N} (\hat{Y}_{i} - Y_{i})^{2}}\right]$ values

averaged across the 10 iterations.

īn paragampang

፤ product produc

For all SVM analyses, significance was determined by the binomial inverse of the cumulative distribution function to identify the smallest number of

Reggente et al.

NEUROSCIENCE

PSYCHOLOGICAL AND COGNITIVE SCIENCES

ѓ<table-cell>

correct classifications of the total number of classifications (number of participants raised to the power of the number of groups in the classification), where the distribution was centered around the chance value by randomly shuffling the labels before classification (49).

Results

Participants. Fifty-one right-handed adults ages 18–60 with the *Diagnostic and Statistical Manual of Mental Disorders, 4th edition* (*DSM–IV*) (50) OCD were enrolled. Four waitlist-first participants withdrew before completing waitlist, and one was withdrawn due to medication protocol violation. The study physician withdrew two treatment-first participants, and two completed the study but had inadequate fMRI data due to head motion. Ultimately, data from 42 OCD participants were analyzed. Thirteen were medicated: six with fluoxetine, one with fluoxamine, two with escitalopram, and three with sertraline. Twenty-nine had one or more comorbid psychiatric diagnoses (Table 1 and Table S1).

Functional Connectivity. Two of the pretreatment FC feature sets strongly and reliably predicted a participant's posttreatment YBOCS (Fig. 2). When the DMN's pretreatment FC values were used in the feature set, the classification was most powerful, capturing 67% of the variance in posttreatment YBOCS ($R^2 = 0.67$; RMSE = 3.32; $p_t < 0.001$; $p_{bs} < 0.001$). Pretreatment

FC within the visual network also accounted for significant variance ($R^2 = 0.51$; RMSE = 3.69; $p_t < 0.001$; $p_{bs} < 0.001$). No other networks reached statistical significance (Table 2).

Table 1. Demographic and psychometric characteristics of the sample (N = 42)

Characteristic	Value	SD	P value
Female/male	22/20		
Age	32.4	9.9	
Education, y	15.6	2.4	
WASI IQ	108.4	9.1	
Number on serotonin-reuptake inhibitor	13		
Number with psychiatric comorbidities	29		
Number without psychiatric comorbidities	13		
YBOCS total pre-CBT	24.6	4.7	
YBOCS total post-CBT	15.0	5.3	<0.001*
YBOCS obsessions (1–5) pre-CBT	12.0	2.7	
YBOCS obsessions (1–5) post-CBT	7.9	3.1	<0.001*
YBOCS compulsions (6–10) pre-CBT	12.6	2.3	
YBOCS compulsions (6–10) post-CBT	7.1	2.7	<0.001*
HAMA pre-CBT	12.5	5.3	
HAMA post-CBT	8.5	5.1	<0.001*
MADRS pre-CBT	15.6	9.3	
MADRS post-CBT	11.0	8.9	<0.001*
GAS pre-CBT	57.7	8.6	
GAS post-CBT	69.5	13.4	<0.001*

*Paired t test, comparing pre- versus post-CBT.

 Table 2.
 Associations between predicted and actual post-CBT

 OCD symptom severity for eight functional brain connectivity
 networks subjected to multivariate analysis

Network	R ²
Default mode	0.672*
Visual	0.505*
Dorsal attention	0.022
Somatosensory motor	0.123
Cinguloopercular	0.170
Frontoparietal	0.215
Subcortical	0.148
Ventral attention	0.057

* $p \le 0.006$; Bonferroni-corrected significance level.

power in both the DMN ($R^2 = 0.67$ with vs. $R^2 = 0.69$ without) and visual network ($R^2 = 0.51$ with vs. $R^2 = 0.53$ without). No feature sets accounted for significant variance in participants' postwaitlist YBOCS scores, indicating that prediction of OCD outcome was specifically related to CBT as opposed to the mere passage of time. To confirm that results were specific to predicting OCD symptom outcomes, we also conducted cross-validations for the HAMA and MADRS scores both before and after treatment. No networks accounted for significant variance in these end points. To confirm that our results were specific to OCD outcome and not comorbid conditions such as depression and anxiety, we used the pretreatment data in two SVM crossī validations valid disorder (n = 10; major depressive disorder, dysthymic disorder, and depressive disorder not otherwise specified) and/or (ii) an anxiety disorder (n = 24; generalized anxiety disorder, social anxiety disorder, panic disorder, posttraumatic stress disorder, specific phobia, and body dysmorphic disorder). See SI Methods for more information. No feature sets had a classification ac-from chance (50%) in either cross-validation.

ى

љ<table-cell>To exact to exact t

Discussion

This OCD study uses multivariate pattern recognition to identify neurobiological predictors of treatment response. Pretreatment multivariate connectivity in the DMN and the visual network significantly predicted individual patients' OCD symptoms after 4 wk of intensive CBT. Conversely, pretreatment OCD symptom severity was only moderately associated with posttreatment severity and, along with medication status, was not ranked in the

ేnabbittee. Defficients Deficients Deficients

Pretreatment connectivity within the DMN was most predictive of end point OCD symptoms. This could reflect the potential of certain individuals' DMN to reorganize to provide a neural instantiation for modified behaviors taught during CBT. The DMN has been associated with self-referential processing (52), and obsessions often contain "evaluative dimensions about the self" (53). These may be associated with contamination-re-personal responsibility (e.g., moral or religious scrupulosity) or obsessive concerns about harm. It is thus plausible that DMN connectivity patterns are related to OCD symptoms and/or responsiveness to CBT. Indeed, recent neuroimaging studies have found abnormal connectivity in the DMN and its constituent ğlaramatrassaramat proposed functions of the DMN, these studies suggest a possible contributor to self-oriented repetitive obsessions in some OCD patients: an impaired inability of the medial frontal cortex to evaluate performance (56, 57). For example, the hands are compulsively washed again because the first time was not "good enough," or prayer is scrupulously repeated since it was not sufficiently "pure" or "devout" the first time. Our results could reflect the potential for the DMN to adjust toward a more adaptive state, allowing one's thoughts to escape the loop of selfreferential processing and to switch to externally oriented, goaldirected cognition (58).

Pretreatment connectivity across the visual network also significantly predicted end point OCD symptoms. In anxiety

Fig. 2. Scatterplots depicting the relationship between the array of predicted posttreatment YBOCS values with the actual posttreatment YBOCS values when the LASSO cross-validation model was relying on feature sets that included pretreatment functional connectivity from the default mode network (*Left*) and the visual network (*Right*).

disorders and in other obsessive–compulsive related disorders, similar brain activity and connectivity relationships have been observed in visual regions. A study in social anxiety disorder found right visual cortex activity in response to angry faces to be associated with improved symptoms post-CBT (59). Also in social anxiety disorder, FC between amygdala and inferior temporal/occipital cortex and fractional anisotropy in inferior longitudinal fasciculus (connecting the amygdala with visual regions) both predicted symptom response to CBT (60). Activity in the visual stream, mediated by amygdala activity, was associated with anxiety in individuals with body dysmorphic disorder (61).

īin parabina p

Emotionally charged stimuli can up-regulate visual processing (64-68). In most cases, e.g., ref. 69, such up-regulation is adaptive. However, misattribution of emotional valence to nonthreatening or non-task-related stimuli could cause pathological up-regulation of visual processing dedicated to those stimuli. In OCD, hypervigilance-related up-regulation could enhance visual attention, contributing to obsessional preoccupation with environmental stimuli that are not inherently salient (e.g., a dirty doorknob) or with irrelevant details (70). Because visual awareness has been shown to modulate detection of fearful stimuli (71), visual activation could facilitate an arousal feedback loop within and across the visual network and amygdalae. In the current study, OCD participants who achieved lower post-CBT YBOCS may be those who started treatment with visual systems that were more amenable to a "rewiring" that could help impede such circularities. As such, we suspected that including an amygdala ROI to our visual network might result in a FC feature set that outperformed the visual network alone. However, we witnessed no increase in model performance-accuracy stayed the same. This suggests that FC within the visual network may already contain information relayed by the amygdala or that the amygdala does not meaningfully modulate visual activity, as related to OCD treatment response, during rest. Future studies

1. American Psychiatric Association (2013) *Diagnostic and Statistical Manual of Mental Disorders: DSM-5* (Am Psychiatr Assoc, Washington, DC), 5th Ed.

- Weissman MM, et al.; The Cross National Collaborative Group (1994) The cross national epidemiology of obsessive compulsive disorder. J Clin Psychiatry 55:5–10.
- Huppert JD, Simpson HB, Nissenson KJ, Liebowitz MR, Foa EB (2009) Quality of life and functional impairment in obsessive-compulsive disorder: A comparison of patients with and without comorbidity, patients in remission, and healthy controls. *Depress Anxiety* 26:39–45.
- Kaczkurkin AN, Foa EB (2015) Cognitive-behavioral therapy for anxiety disorders: An update on the empirical evidence. *Dialogues Clin Neurosci* 17:337–346.
- Hirschtritt ME, Bloch MH, Mathews CA (2017) Obsessive-compulsive disorder: Advances in diagnosis and treatment. JAMA 317:1358–1367.
- Foa EB, et al. (2010) Development and validation of a child version of the obsessive compulsive inventory. *Behav Ther* 41:121–132.
- O'Neill J, Feusner JD (2015) Cognitive-behavioral therapy for obsessive-compulsive disorder: Access to treatment, prediction of long-term outcome with neuroimaging. *Psychol Res Behav Manag* 8:211–223.
- Knopp J, Knowles S, Bee P, Lovell K, Bower P (2013) A systematic review of predictors and moderators of response to psychological therapies in OCD: Do we have enough empirical evidence to target treatment? *Clin Psychol Rev* 33:1067–1081.
- Olatunji BO, Davis ML, Powers MB, Smits JAJ (2013) Cognitive-behavioral therapy for obsessive-compulsive disorder: A meta-analysis of treatment outcome and moderators. J Psychiatr Res 47:33–41.

2226 | www.pnas.org/cgi/doi/10.1073/pnas.1716686115

ີ<page-header><list-item><text><table-row><section-header><text><table-row><text>

One limitation of the current study is sample size. Our crossvalidation approach of leaving out ~25% of participants for model testing helped minimize overfitting, yet much larger datasets that can be randomly split and still contain larger numbers for both training and testing the model may provide more optimal internal validation. Beyond that, there is need for validation in a fully independent sample to ensure robustness and generalizability across samples that differ slightly, because prediction analyses in smaller studies may fail to generalize when applied to independent samples. Another limitation is that some participants (n = 13) were medicated. The small size of this subsample precluded separate analyses of medicated and unmedicated participants, so to account for possible medication effects we used a binary medication variable in the model. A further limitation is that although multivariate regression analyses capitalize on complex data patterns to make predictions, the specific nature of the patterns that lead to predictions can be challenging to interpret. Future work is required to obtain a deeper mechanistic understanding of which sets of regions and directions of interactions within the DMN and visual network are driving the classifier's predictions and why.

ѓ harrod ha

ቫි, officially, offi

- Fullana MA, Simpson HB (2016) The potential use of neuroimaging biomarkers in the treatment of obsessive-compulsive disorder. *Curr Treat Options Psychiatry* 3:246–252.
- Olatunji BO, et al. (2014) Predicting response to cognitive behavioral therapy in contamination-based obsessive-compulsive disorder from functional magnetic resonance imaging. *Psychol Med* 44:2125–2137.
- Göttlich M, Krämer UM, Kordon A, Hohagen F, Zurowski B (2015) Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. *Biol Psychol* 111:100–109.
- Feusner JD, et al. (2015) Brain connectivity and prediction of relapse after cognitivebehavioral therapy in obsessive-compulsive disorder. Front Psychiatry 6:74.
- Orrù G, Pettersson-Yeo W, Marquand AF, Sartori G, Mechelli A (2012) Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: A critical review. *Neurosci Biobehav Rev* 36:1140–1152.
- Wolfers T, Buitelaar JK, Beckmann CF, Franke B, Marquand AF (2015) From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. *Neurosci Biobehav Rev* 57:328–349.
- Beucke JC, et al. (2014) Default mode network subsystem alterations in obsessive compulsive disorder. Br J Psychiatry 205:376–382.
- Jang JH, et al. (2010) Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder. *Neurosci Lett* 474:158–162.

Reggente et al.

t Palestinian Territory, occupied on December 16, 20

- Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF (2012) Resting-state functional connectivity between fronto-parietal and default mode networks in obsessivecompulsive disorder. *PLoS One* 7:e36356.
- Hou J, et al. (2013) Morphologic and functional connectivity alterations of corticostriatal and default mode network in treatment-naïve patients with obsessive-compulsive disorder. PLoS One 8:e83931.
- Maia TV, Cooney RE, Peterson BS (2008) The neural bases of obsessive-compulsive disorder in children and adults. *Dev Psychopathol* 20:1251–1283.
- 24. Power JD, et al. (2011) Functional network organization of the human brain. *Neuron* 72:665–678.
- Brem S, et al. (2012) Neuroimaging of cognitive brain function in paediatric obsessive compulsive disorder: A review of literature and preliminary meta-analysis. J Neural Transm (Vienna) 119:1425–1448.
- Milad MR, Rauch SL (2012) Obsessive-compulsive disorder: Beyond segregated corticostriatal pathways. Trends Cogn Sci 16:43–51.
- 27. Stern ER, Taylor SF (2014) Cognitive neuroscience of obsessive-compulsive disorder. *Psychiatr Clin North Am* 37:337–352.
- Szeszko PR, et al. (1999) Orbital frontal and amygdala volume reductions in obsessivecompulsive disorder. Arch Gen Psychiatry 56:913–919.
- Szeszko PR, et al. (2004) Amygdala volume reductions in pediatric patients with obsessive-compulsive disorder treated with paroxetine: Preliminary findings. Neuropsychopharmacology 29:826–832.
- Admon R, et al. (2012) Functional and structural neural indices of risk aversion in obsessive-compulsive disorder (OCD). *Psychiatry Res* 203:207–213.
- de Vries FE, et al. (2014) Compensatory frontoparietal activity during working memory: An endophenotype of obsessive-compulsive disorder. *Biol Psychiatry* 76: 878–887.
- van Velzen LS, et al. (2015) Altered inhibition-related frontolimbic connectivity in obsessive-compulsive disorder. *Hum Brain Mapp* 36:4064–4075.
- DiNardo P, Brown T, Barlow D (1994) Anxiety Disorders Interview Schedule for DSM-IV: Lifetime Version (Graywind, Albany, NY).
- Goodman WK, et al. (1989) The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Arch Gen Psychiatry 46:1006–1011.
- Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32: 50–55.
- Montgomery SA, Asberg M (1979) A new depression scale designed to be sensitive to change. Br J Psychiatry 134:382–389.
- Kozak MJ, Foa EB (1997) Mastery of Obsessive-Compulsive Disorder: A Cognitive-Behavioral Approach Client Workbook (Oxford Univ Press, New York).
- Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE (2012) Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. *Neuroimage* 59:2142–2154.
- Power JD, et al. (2014) Methods to detect, characterize, and remove motion artifact in resting state fMRI. *Neuroimage* 84:320–341.
- Harrison BJ, et al. (2009) Altered corticostriatal functional connectivity in obsessivecompulsive disorder. Arch Gen Psychiatry 66:1189–1200.
- Mataix-Cols D, et al. (2004) Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 61:564–576.
- Jung WH, et al. (2009) BOLD response during visual perception of biological motion in obsessive-compulsive disorder: An fMRI study using the dynamic point-light animation paradigm. Eur Arch Psychiatry Clin Neurosci 259:46–54.

- Stern ER (2014) Neural circuitry of interoception: New insights into anxiety and obsessive-compulsive disorders. Curr Treat Options Psychiatry 1:235–247.
- Hou J-M, et al. (2014) Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. J Psychiatry Neurosci 39:304–311.
- Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol 58:267–288.
- 47. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32: 407–499.
- Chong I-G, Jun C-H (2005) Performance of some variable selection methods when multicollinearity is present. *Chemom Intell Lab Syst* 78:103–112.
- Pereira F, Mitchell T, Botvinick M (2009) Machine learning classifiers and fMRI: A tutorial overview. *Neuroimage* 45(Suppl 1):S199–S209.
- љ<table-cell><list-item>
- Mataix-Cols D, et al. (2016) Towards an international expert consensus for defining treatment response, remission, recovery and relapse in obsessive-compulsive disorder. *World Psychiatry* 15:80–81.
- Sheline YI, et al. (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106:1942–1947.
- Aardema F, et al. (2013) Fear of self and obsessionality: Development and validation of the fear of self questionnaire. J Obsessive Compuls Relat Disord 2:306–315.
- Doron G, Sar-El D, Mikulincer M (2012) Threats to moral self-perceptions trigger obsessive compulsive contamination-related behavioral tendencies. J Behav Ther Exp Psychiatry 43:884–890.
- Peng ZW, et al. (2014) Default network connectivity as a vulnerability marker for obsessive compulsive disorder. *Psychol Med* 44:1475–1484.
- Schwartz JM (1999) A role for volition and attention in the generation of new brain circuitry: Toward a neurobiology of mental force. J Conscious Stud 6:115–142.
- Szechtman H, Woody E (2004) Obsessive-compulsive disorder as a disturbance of security motivation. *Psychol Rev* 111:111–127.
- Anticevic A, et al. (2012) The role of default network deactivation in cognition and disease. Trends Cogn Sci 16:584–592.
- Doehrmann O, et al. (2013) Predicting treatment response in social anxiety disorder from functional magnetic resonance imaging. JAMA Psychiatry 70:87–97.
- Whitfield-Gabrieli S, et al. (2016) Brain connectomics predict response to treatment in social anxiety disorder. Mol Psychiatry 21:680–685.
- Bohon C, Hembacher E, Moller H, Moody TD, Feusner JD (2012) Nonlinear relationships between anxiety and visual processing of own and others' faces in body dysmorphic disorder. *Psychiatry Res* 204:132–139.
- Foa EB, Kozak MJ (1986) Emotional processing of fear: Exposure to corrective information. *Psychol Bull* 99:20–35.
- Craske MG, et al. (2008) Optimizing inhibitory learning during exposure therapy. Behav Res Ther 46:5–27.
- Lang PJ, et al. (1998) Emotional arousal and activation of the visual cortex: An fMRI analysis. *Psychophysiology* 35:199–210.
- Pizzagalli DA, et al. (2002) Affective judgments of faces modulate early activity (approximately 160 ms) within the fusiform gyri. Neuroimage 16:663–677.
- Vuilleumier P, Schwartz S (2001) Emotional facial expressions capture attention. Neurology 56:153–158.
- Duncan S, Barrett LF (2007) The role of the amygdala in visual awareness. Trends Cogn Sci 11:190–192.
- 69. Fox E, et al. (2000) Facial expressions of emotion: Are angry faces detected more efficiently? *Cogn Emotion* 14:61–92.
- Yovel I, Revelle W, Mineka S (2005) Who sees trees before forest? The obsessivecompulsive style of visual attention. *Psychol Sci* 16:123–129.

led at Palestinian Territory, occupied on December 16, 2021

